3.774 \(\int \frac{\cot ^{\frac{5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=221 \[ -\frac{7 \cot ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 a^2 d}+\frac{13 i \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{2 a^2 d}-\frac{\left (\frac{1}{4}-\frac{i}{4}\right ) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac{5 \cot ^{\frac{3}{2}}(c+d x)}{2 a d \sqrt{a+i a \tan (c+d x)}}+\frac{\cot ^{\frac{3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}} \]

[Out]

((-1/4 + I/4)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt
[Tan[c + d*x]])/(a^(3/2)*d) + Cot[c + d*x]^(3/2)/(3*d*(a + I*a*Tan[c + d*x])^(3/2)) + (5*Cot[c + d*x]^(3/2))/(
2*a*d*Sqrt[a + I*a*Tan[c + d*x]]) + (((13*I)/2)*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(a^2*d) - (7*Co
t[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]])/(2*a^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.649301, antiderivative size = 221, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {4241, 3559, 3596, 3598, 12, 3544, 205} \[ -\frac{7 \cot ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 a^2 d}+\frac{13 i \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{2 a^2 d}-\frac{\left (\frac{1}{4}-\frac{i}{4}\right ) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac{5 \cot ^{\frac{3}{2}}(c+d x)}{2 a d \sqrt{a+i a \tan (c+d x)}}+\frac{\cot ^{\frac{3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(5/2)/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((-1/4 + I/4)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt
[Tan[c + d*x]])/(a^(3/2)*d) + Cot[c + d*x]^(3/2)/(3*d*(a + I*a*Tan[c + d*x])^(3/2)) + (5*Cot[c + d*x]^(3/2))/(
2*a*d*Sqrt[a + I*a*Tan[c + d*x]]) + (((13*I)/2)*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(a^2*d) - (7*Co
t[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]])/(2*a^2*d)

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rule 3559

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(a*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d))
, Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*c*m - a*d*(2*m + n + 1) + b*d*(m + n + 1)*Tan
[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2
+ d^2, 0] && LtQ[m, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3596

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*A + b*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2
*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 3598

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*d - B*c)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(f
*(n + 1)*(c^2 + d^2)), x] - Dist[1/(a*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n
 + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cot ^{\frac{5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx &=\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{1}{\tan ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx\\ &=\frac{\cot ^{\frac{3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\frac{9 a}{2}-3 i a \tan (c+d x)}{\tan ^{\frac{5}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}} \, dx}{3 a^2}\\ &=\frac{\cot ^{\frac{3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac{5 \cot ^{\frac{3}{2}}(c+d x)}{2 a d \sqrt{a+i a \tan (c+d x)}}+\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)} \left (\frac{63 a^2}{4}-15 i a^2 \tan (c+d x)\right )}{\tan ^{\frac{5}{2}}(c+d x)} \, dx}{3 a^4}\\ &=\frac{\cot ^{\frac{3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac{5 \cot ^{\frac{3}{2}}(c+d x)}{2 a d \sqrt{a+i a \tan (c+d x)}}-\frac{7 \cot ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 a^2 d}+\frac{\left (2 \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)} \left (-\frac{117 i a^3}{8}-\frac{63}{4} a^3 \tan (c+d x)\right )}{\tan ^{\frac{3}{2}}(c+d x)} \, dx}{9 a^5}\\ &=\frac{\cot ^{\frac{3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac{5 \cot ^{\frac{3}{2}}(c+d x)}{2 a d \sqrt{a+i a \tan (c+d x)}}+\frac{13 i \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{2 a^2 d}-\frac{7 \cot ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 a^2 d}+\frac{\left (4 \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int -\frac{9 a^4 \sqrt{a+i a \tan (c+d x)}}{16 \sqrt{\tan (c+d x)}} \, dx}{9 a^6}\\ &=\frac{\cot ^{\frac{3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac{5 \cot ^{\frac{3}{2}}(c+d x)}{2 a d \sqrt{a+i a \tan (c+d x)}}+\frac{13 i \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{2 a^2 d}-\frac{7 \cot ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 a^2 d}-\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx}{4 a^2}\\ &=\frac{\cot ^{\frac{3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac{5 \cot ^{\frac{3}{2}}(c+d x)}{2 a d \sqrt{a+i a \tan (c+d x)}}+\frac{13 i \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{2 a^2 d}-\frac{7 \cot ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 a^2 d}+\frac{\left (i \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{2 d}\\ &=-\frac{\left (\frac{1}{4}-\frac{i}{4}\right ) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{a^{3/2} d}+\frac{\cot ^{\frac{3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac{5 \cot ^{\frac{3}{2}}(c+d x)}{2 a d \sqrt{a+i a \tan (c+d x)}}+\frac{13 i \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{2 a^2 d}-\frac{7 \cot ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 a^2 d}\\ \end{align*}

Mathematica [A]  time = 1.57406, size = 186, normalized size = 0.84 \[ \frac{i e^{-4 i (c+d x)} \sqrt{\frac{a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt{\cot (c+d x)} \left (18 e^{2 i (c+d x)}-87 e^{4 i (c+d x)}+52 e^{6 i (c+d x)}+3 e^{3 i (c+d x)} \left (-1+e^{2 i (c+d x)}\right )^{3/2} \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )+1\right )}{6 \sqrt{2} a^2 d \left (-1+e^{2 i (c+d x)}\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^(5/2)/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((I/6)*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*(1 + 18*E^((2*I)*(c + d*x)) - 87*E^((4*I)*(c +
d*x)) + 52*E^((6*I)*(c + d*x)) + 3*E^((3*I)*(c + d*x))*(-1 + E^((2*I)*(c + d*x)))^(3/2)*ArcTanh[E^(I*(c + d*x)
)/Sqrt[-1 + E^((2*I)*(c + d*x))]])*Sqrt[Cot[c + d*x]])/(Sqrt[2]*a^2*d*E^((4*I)*(c + d*x))*(-1 + E^((2*I)*(c +
d*x))))

________________________________________________________________________________________

Maple [B]  time = 0.398, size = 445, normalized size = 2. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

(-1/12-1/12*I)/d/a^2*(cos(d*x+c)/sin(d*x+c))^(5/2)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*sin(d*x+c)*(
3*I*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*
2^(1/2))+4*I*cos(d*x+c)^5+13*I*cos(d*x+c)^3-39*I*sin(d*x+c)-3*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*cos(d*
x+c)^2*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))-4*cos(d*x+c)^5+4*sin(d*x+c)*cos(d*x+c)^4+
4*I*cos(d*x+c)^4*sin(d*x+c)+3*I*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*cos(d*x+c)*sin(d*x+c)*arctan((1/2+1/
2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))+3*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*arctan((1/2+1/2*I)
*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))-13*cos(d*x+c)^3+15*cos(d*x+c)^2*sin(d*x+c)-21*I*cos(d*x+c)+15*I*co
s(d*x+c)^2*sin(d*x+c)+21*cos(d*x+c)-39*sin(d*x+c))/cos(d*x+c)^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 1.4691, size = 1199, normalized size = 5.43 \begin{align*} \frac{\sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}{\left (52 i \, e^{\left (6 i \, d x + 6 i \, c\right )} - 87 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 18 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i\right )} e^{\left (i \, d x + i \, c\right )} - 3 \,{\left (a^{2} d e^{\left (6 i \, d x + 6 i \, c\right )} - a^{2} d e^{\left (4 i \, d x + 4 i \, c\right )}\right )} \sqrt{-\frac{i}{2 \, a^{3} d^{2}}} \log \left (\frac{1}{4} \,{\left (2 i \, a^{2} d \sqrt{-\frac{i}{2 \, a^{3} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} - 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + 3 \,{\left (a^{2} d e^{\left (6 i \, d x + 6 i \, c\right )} - a^{2} d e^{\left (4 i \, d x + 4 i \, c\right )}\right )} \sqrt{-\frac{i}{2 \, a^{3} d^{2}}} \log \left (\frac{1}{4} \,{\left (-2 i \, a^{2} d \sqrt{-\frac{i}{2 \, a^{3} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} - 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right )}{12 \,{\left (a^{2} d e^{\left (6 i \, d x + 6 i \, c\right )} - a^{2} d e^{\left (4 i \, d x + 4 i \, c\right )}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/12*(sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*(5
2*I*e^(6*I*d*x + 6*I*c) - 87*I*e^(4*I*d*x + 4*I*c) + 18*I*e^(2*I*d*x + 2*I*c) + I)*e^(I*d*x + I*c) - 3*(a^2*d*
e^(6*I*d*x + 6*I*c) - a^2*d*e^(4*I*d*x + 4*I*c))*sqrt(-1/2*I/(a^3*d^2))*log(1/4*(2*I*a^2*d*sqrt(-1/2*I/(a^3*d^
2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d
*x + 2*I*c) - 1))*(e^(2*I*d*x + 2*I*c) - 1)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + 3*(a^2*d*e^(6*I*d*x + 6*I*c)
- a^2*d*e^(4*I*d*x + 4*I*c))*sqrt(-1/2*I/(a^3*d^2))*log(1/4*(-2*I*a^2*d*sqrt(-1/2*I/(a^3*d^2))*e^(2*I*d*x + 2*
I*c) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*(
e^(2*I*d*x + 2*I*c) - 1)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)))/(a^2*d*e^(6*I*d*x + 6*I*c) - a^2*d*e^(4*I*d*x + 4
*I*c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(5/2)/(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot \left (d x + c\right )^{\frac{5}{2}}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(cot(d*x + c)^(5/2)/(I*a*tan(d*x + c) + a)^(3/2), x)